Problem 91

Distances between points in a plane do not change when a coordinate system is rotated. In other words, the magnitude of a vector is invariant under rotations of the coordinate system. Suppose a coordinate system S is rotated about its origin by angle φ to become a new coordinate system S^{\prime}, as shown in the following figure. A point in a plane has coordinates (x, y) in S and coordinates $\left(x^{\prime}, y^{\prime}\right)$ in S^{\prime}.
(a) Show that, during the transformation of rotation, the coordinates in S^{\prime} are expressed in terms of the coordinates in S by the following relations:

$$
\left\{\begin{array}{l}
x^{\prime}=x \cos \varphi+y \sin \varphi \\
y^{\prime}=-x \sin \varphi+y \cos \varphi
\end{array} .\right.
$$

(b) Show that the distance of point P to the origin is invariant under rotations of the coordinate system. Here, you have to show that

$$
\sqrt{x^{2}+y^{2}}=\sqrt{x^{\prime 2}+y^{\prime 2}} .
$$

(c) Show that the distance between points P and Q is invariant under rotations of the coordinate system. Here, you have to show that

$$
\sqrt{\left(x_{P}-x_{Q}\right)^{2}+\left(y_{P}-y_{Q}\right)^{2}}=\sqrt{\left(x_{P}^{\prime}-x_{Q}^{\prime}\right)^{2}+\left(y_{P}^{\prime}-y_{Q}^{\prime}\right)^{2}} .
$$

Solution

Part (a)

Let $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{x}}^{\prime}$, and $\hat{\mathbf{y}}^{\prime}$ be the unit vectors along the x-axis, y-axis, x^{\prime}-axis, and y^{\prime}-axis, respectively. For the point P given by (x, y), consider the vectors along the x - and y-axes.

To get x^{\prime}, take the components of these vectors along the x^{\prime}-axis and add them together.

$$
\begin{aligned}
x^{\prime} & =(x \hat{\mathbf{x}}) \cdot \hat{\mathbf{x}}^{\prime}+(y \hat{\mathbf{y}}) \cdot \hat{\mathbf{x}}^{\prime} \\
& =x\left(\hat{\mathbf{x}} \cdot \hat{\mathbf{x}}^{\prime}\right)+y\left(\hat{\mathbf{y}} \cdot \hat{\mathbf{x}}^{\prime}\right) \\
& =x|\hat{\mathbf{x}}|\left|\hat{\mathbf{x}}^{\prime}\right| \cos \varphi+y|\hat{\mathbf{y}}|\left|\hat{\mathbf{x}}^{\prime}\right| \cos \left(90^{\circ}-\varphi\right) \\
& =x(1)(1) \cos \varphi+y(1)(1) \sin \varphi \\
& =x \cos \varphi+y \sin \varphi
\end{aligned}
$$

To get y^{\prime}, take the components of these vectors along the y^{\prime}-axis and add them together.

$$
\begin{aligned}
y^{\prime} & =(x \hat{\mathbf{x}}) \cdot \hat{\mathbf{y}}^{\prime}+(y \hat{\mathbf{y}}) \cdot \hat{\mathbf{y}}^{\prime} \\
& =x\left(\hat{\mathbf{x}} \cdot \hat{\mathbf{y}}^{\prime}\right)+y\left(\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}^{\prime}\right) \\
& =x|\hat{\mathbf{x}}|\left|\hat{\mathbf{y}}^{\prime}\right| \cos \left(90^{\circ}+\varphi\right)+y|\hat{\mathbf{y}}|\left|\hat{\mathbf{y}}^{\prime}\right| \cos \varphi \\
& =x(1)(1)(-\sin \varphi)+y(1)(1) \cos \varphi \\
& =-x \sin \varphi+y \cos \varphi
\end{aligned}
$$

Part (b)

The distance from the origin to point P is invariant because

$$
\begin{aligned}
\sqrt{x^{\prime 2}+y^{\prime 2}} & =\sqrt{(x \cos \varphi+y \sin \varphi)^{2}+(-x \sin \varphi+y \cos \varphi)^{2}} \\
& =\sqrt{\left(x^{2} \cos ^{2} \varphi+2 x y \cos \varphi \sin \varphi+y^{2} \sin ^{2} \varphi\right)+\left(x^{2} \sin ^{2} \varphi-2 x y \sin \varphi \cos \varphi+y^{2} \cos ^{2} \varphi\right)} \\
& =\sqrt{x^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)+y^{2}\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)} \\
& =\sqrt{x^{2}+y^{2}} .
\end{aligned}
$$

Part (c)

Let point P be $\left(x_{P}, y_{P}\right)$, and let point Q be $\left(x_{Q}, y_{Q}\right)$.

$$
\begin{aligned}
\sqrt{\left(x_{P}^{\prime}-x_{Q}^{\prime}\right)^{2}+\left(y_{P}^{\prime}-y_{Q}^{\prime}\right)^{2}} & =\sqrt{\left[\left(x_{P} \cos \varphi+y_{P} \sin \varphi\right)-\left(x_{Q} \cos \varphi+y_{Q} \sin \varphi\right)\right]^{2}+\left[\left(-x_{P} \sin \varphi+y_{P} \cos \varphi\right)-\left(-x_{Q} \sin \varphi+y_{Q} \cos \varphi\right)\right]^{2}} \\
& =\sqrt{\left[\left(x_{P}-x_{Q}\right) \cos \varphi+\left(y_{P}-y_{Q}\right) \sin \varphi\right]^{2}+\left[\left(x_{Q}-x_{P}\right) \sin \varphi+\left(y_{P}-y_{Q}\right) \cos \varphi\right]^{2}}
\end{aligned}
$$

Note that

$$
\left[\left(x_{P}-x_{Q}\right) \cos \varphi+\left(y_{P}-y_{Q}\right) \sin \varphi\right]^{2}=\left(x_{P}-x_{Q}\right)^{2} \cos ^{2} \varphi+2\left(x_{P}-x_{Q}\right)\left(y_{P}-y_{Q}\right) \cos \varphi \sin \varphi+\left(y_{P}-y_{Q}\right)^{2} \sin ^{2} \varphi
$$

and

$$
\begin{aligned}
{\left[\left(x_{Q}-x_{P}\right) \sin \varphi+\left(y_{P}-y_{Q}\right) \cos \varphi\right]^{2} } & =\left(x_{Q}-x_{P}\right)^{2} \sin ^{2} \varphi+2\left(x_{Q}-x_{P}\right)\left(y_{P}-y_{Q}\right) \sin \varphi \cos \varphi+\left(y_{P}-y_{Q}\right)^{2} \cos ^{2} \varphi \\
& =\left(x_{P}-x_{Q}\right)^{2} \sin ^{2} \varphi-2\left(x_{P}-x_{Q}\right)\left(y_{P}-y_{Q}\right) \cos \varphi \sin \varphi+\left(y_{P}-y_{Q}\right)^{2} \cos ^{2} \varphi
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sqrt{\left(x_{P}^{\prime}-x_{Q}^{\prime}\right)^{2}+\left(y_{P}^{\prime}-y_{Q}^{\prime}\right)^{2}} & =\sqrt{\left(x_{P}-x_{Q}\right)^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)+\left(y_{P}-y_{Q}\right)^{2}\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right)} \\
& =\sqrt{\left(x_{P}-x_{Q}\right)^{2}+\left(y_{P}-y_{Q}\right)^{2}},
\end{aligned}
$$

which means the distance between points P and Q is invariant under rotations of the coordinate system.

